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Abstract. In this paper we have studied the properties of a two-fermion system interacting with the
phonon field in the framework of the Holstein Hubbard model in one, two and three dimensions. We
have chosen the modified Lang–Firsov variational wave function with on-site and nearest-neighbour
lattice distortion for the phonon subsystem to obtain an effective electronic Hamiltonian. This
effective electronic Hamiltonian is then solved exactly to obtain the binding energy and effective
mass of the bipolaron. We investigated the stability of the bipolaronic phase by comparing the
ground-state energy of a bipolaron and two free polarons. We observed a critical repulsive on-site
Hubbard interactionUc below which the bipolaronic phases are stable for a fixed electron–phonon
couplingg. In the absence of on-site repulsion, bipolaronic phases are stable over the entire range of
electron–phonon coupling for one dimension, whereas there is a critical electron–phonon coupling
gc for formation of a stable bipolaron in two and three dimensions.

1. Introduction

The discovery of high-temperature superconductivity has provided a strong impetus for a
renewed effort to study strongly correlated electron systems in the presence of phonons. The
many-electron system on a lattice strongly coupled with phonons turns out to be a charged Bose
liquid consisting of on-site or inter-site small bipolarons if the Coulomb repulsion is not very
strong. This pairing of electrons or holes in real space plays an important role in determining
the properties of many-particle systems such as transition metal oxides [1], superconducting
materials [2, 3], conjugated polymers [4] and alternating-valence compounds [5]. The model
which has most often served as a paradigm for electronic correlation in the presence of electron–
phonon interaction is the Holstein Hubbard model (HHM) [6, 7]. There is quite general
agreement that an accurate solution to the HHM over the whole region of parameter space
will be able to provide an understanding of many physical properties of the above-mentioned
materials. However, in spite of the simplicity of the model, a great effort is needed in order to
achieve accurate solutions. Recently this electron–phonon problem has been studied through
the exact diagonalization of small linear clusters with one [8,9] or two [9] particles and a limited
number of phonons and also by quantum Monte Carlo methods [10–12]. Another strategy for
studying the electron–phonon problem is by using variational methods [13–17]. La Magna
and Pucci [16] have performed a variational study of the one-dimensional bipolaron problem.
In their work they provide us with a detailed study of the formation of a bound state in the
presence of the on-site Hubbard interactionU in one dimension. To the best of our knowledge,
most of the work concerning the bound-state formation in the HHM has been performed for
one dimension. However, there remain a large number of strongly correlated systems which
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are realized in two or three dimensions. To include those systems in our sphere of investigation,
studies on the HHM in higher dimensions are important. In the present work we study the
formation of bipolarons in one, two and three dimensions for the discrete Holstein Hubbard
model in the non-adiabatic limit. Our model Hamiltonian only takes care of on-site electron–
phonon interaction, but due to the retardation effect the lattice deformation can extend beyond
the site at which the electron resides. To take this effect into account, we have treated the
on-site and the nearest-neighbour-site lattice distortion variationally. This variational scheme
is based on Lang–Firsov transformation and is suitable for ¯hω/t > 1 [8].

The paper is organized as follows. In section 2 we obtain an effective interacting Hamil-
tonian from the Holstein Hubbard model. In section 3 we will give an exact solution of this
Hamiltonian in the far non-adiabatic limit where the retardation effect is negligible. The effect
of retardation and the result of our variational calculation on the formation of bipolarons in one,
two and three dimensions are discussed in sections 4 and 5. Finally we present our conclusions
in section 6.

2. The effective-electron model

We consider a system of electrons in the framework of the Hubbard model, which is also
coupled to a collection of Einstein oscillators. The model Hamiltonian of such an interacting
system is

H = −t
∑
〈ij〉,σ

c
†
iσ cjσ +U

∑
i

ni↑ni↓ + h̄ω
∑
i

b
†
i bi + g

∑
i

ni(b
†
i + bi) (1)

whereniσ = c†
iσ ciσ , ni = ni↑+ni↓ and the symbol

∑
〈ij〉 denotes the sum of nearest-neighbour

sites. The operatorc†
iσ (ciσ ) creates (annihilates) an electron with the spin projectionσ on

the site labelledi, while b†
i (bi) creates (annihilates) a quantum of oscillation energy ¯hω in

the model localized on the sitei. The model depends on the nearest-neighbour hoppingt ,
electron–phonon interactiong and an on-site repulsionU between electrons of different spins.

In the presence of strong electron–phonon coupling, the lattice would be deformed around
an electron. To take into account the lattice deformation around the electron, we apply the
modified Lang–Firsov transformation [14] to the HamiltonianH :

H̃ = exp(R)H exp(−R). (2)

That is,

H = −t
∑
〈ij〉,σ

exp(Yi − Yj )c†
iσ cjσ − εp

∑
i

ni +Ueff
∑
i

ni↑ni↓

+ V1

∑
〈ij〉

ninj + V2

∑
i,δ+δ′ 6=0

ni+δni+δ′ + h̄ω
∑
i

b
†
i bi + Vpol−ph (3)

where

R =
∑
i

(
λ′1ni(b

†
i − bi) + λ′2

∑
δ

(b
†
i+δ − bi+δ)ni

)
(4)

Yi = λ′1(b†
i − bi) + λ′2

∑
δ

(b
†
i+δ − bi+δ) (5)

εp = (2g − λ1)λ
′
1− zλ2λ

′
2 (6)

Ueff = U − 2[(2g − λ1)λ
′
1− zλ2λ

′
2] (7)

V1 = −2[(g − λ1)λ
′
2] (8)
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V2 = λ2λ
′
2 (9)

Vpol−ph =
∑
i

(g − λ1)(b
†
i + bi)ni − λ2

∑
δ

(b
†
i+δ + bi+δ)ni . (10)

Here εp is the polaron self-energy,V1 is the coupling strength of the attractive interaction
between nearest-neighbour polarons induced by electron–phonon coupling,V2 is the strength
of the repulsive coupling between next-nearest-neighbour polarons,Ueff is the effective on-site
interaction andVpol−ph is the polaron–phonon interaction.

λ′1 (=λ1/(h̄ω)) andλ′2 (=λ2/(h̄ω)) are the lattice displacements created around an electron
at the same site and the nearest-neighbour sites respectively, which move along with the
electron. Whenλ1 = g andλ2 = 0, the transformation is exactly the Lang–Firsov trans-
formation [13]. To obtain an effective polaronic Hamiltonian, we take the average ofH̃ over
the zero-phonon state (|0〉) [19]:

Heff = 〈0|H |0〉. (11)

That is,

Heff = −t
∑
〈ij〉

c
†
iσ cjσ exp(−λ̄2)− εp

∑
i

ni +Ueff
∑
i

ni↑ni↓

+ V1

∑
〈ij〉

ninj + V2

∑
i,δ+δ′ 6=0

ni+δni+δ′ (12)

where

λ̄2 = (λ′1− λ′2)2 + (z− 1)λ′22 . (13)

3. Bipolarons in the far non-adiabatic limit (h̄ω/t� 1)

In the far non-adiabatic limit (¯hω � t) one can neglect the retardation effects. In that case the
nearest-neighbour lattice distortion due to on-site electron–phonon interaction vanishes. In
this limit, λ2 = 0 andλ1 = g, and the effective Hamiltonian directly maps onto the Hubbard
model:

Heff = −t
∑
〈ij〉,σ

c
†
iσ cjσ exp(−g′2)− εp

∑
i

ni +Ueff
∑
i

ni↑ni↓. (14)

To study the possibility of the formation of bipolarons, we consider two electrons with
spins↑ and↓ in the lattice. In this case the above effective Hamiltonian can be solved exactly
for any dimension. We will write the Hamiltonian in the wave-function representation:

|q,m〉 = 1√
N

∑
l

exp(−iql/2)c†
(l+m)/2,↑c

†
(l−m)/2,↓|vacuum〉 (15)

to express the effective Hamiltonian in the form

Heff = −2t exp(−g′2)
∑
q,m,δ

cos(q/2)|q,m〉〈m + δ, q| +Ueff
∑
q

|q, 0〉〈0, q| − 2εp (16)

whereN is the total number of sites. For a given wave vectorq, its form (16) corresponds to a
system with a single impurity. WhenUeff < 0, then, depending on the dimensionality, there
may exist a bound state with eigenvalues below the band of two polarons. A general solution
can be obtained by means of the Green’s function [18]. The eigenvalues of the bound state are
determined from

1= UeffG0(Eb, q). (17)
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The diagonal element of the Green’s function (G0(Eb, q)) is given by

G0(Eb, q) = 1

N

∑
k

1

Eb(q)− εk+q/2 − ε−k+q/2 + 2εp
(18)

whereεk = 2t̃ cos(k) andt̃ = t exp(−g′2).
Now we will discuss the formation of a stable bipolaron in one, two and three dimensions.

3.1. Case I: one dimension

In one dimension,

G1D
0 (E1D

b , q) = 1√
(E1D

b (q) + 2εp)2 − 16t̃ 2 cos2(q/2)
(19)

and the corresponding energy eigenvalues obtained from equation (17) are given by the
condition

E1D
b (q) = Ueff

√
1 +

16t̃ 2 cos2(q/2)

U2
eff

− 2εp. (20)

The spectrum represents a bipolaron ifE1D
bmin(q) is less than the lowest energy (E1D

2p =
−2εp − 4t̃ ) of two free polarons. So the condition for the formation of 1D bipolarons is

E1D
2p − E1D

bmin > 0 or − Ueff
√

1 +
16t̃ 2

U2
eff

> 4t̃ . (21)

Therefore, for any negative values ofUeff , i.e. whenU/(h̄ω) < 2g′2 one gets a stable bipolaron
in 1D. We can also determine the effective mass of the bipolaron from the definition [15]

m1D
eff =

(
d2E1D

b (q)

dq2

)−1∣∣∣∣
q=0

=
√

16t̃ 2 +U2
eff

4t̃ 2
. (22)

3.2. Case II: two dimensions

In two dimensions we assume the density of states to take a simplified form:

ρD=2(ε) = 2

8t̃q
(64t̃ 2

q − ε2)(D−2)/2 = 2

8t̃q
(23)

so as to calculate the two-dimensional Green’s function (G2D
0 (E2D

b , q)):

G2D
0 (E2D

b , q) = − 1

16t̃q
log

( |E2D
b + 2εp| + 8t̃q

|E2D
b + 2εp| − 8t̃q

)
(24)

in the [1, 1] direction. Herẽtq = t̃ cos(q/2). The corresponding energy dispersion in the [1, 1]
direction is given by

E2D
b = 8t̃ cos(q/2) coth

(
8t̃ cos(q/2)

Ueff

)
− 2εp. (25)

HereE2D
b represents a stable bipolaron provided thatE2D

bmin is less than the lowest energy
(E2D

2p = −2εp − 8t̃ ) of two free polarons in two dimensions, i.e.

E2D
2p − E2D

bmin > 0 or coth

(
8t̃

Ueff

)
< −1. (26)
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Therefore, for anyUeff < 0 (i.e.U/(h̄ω) < g′2), bipolaronic phases represent the ground
state of the system. From the definition

m2D
eff =

z

2

(
d2E2D

b

dq2

)−1∣∣∣∣
q=0

(27)

we obtain the effective mass of the 2D bipolaron:

m2D
eff = 4

/[
4t̃ coth

(
8t̃

|Ueff |
)
− 32t̃ 2

|Ueff | cosech2
(

8t̃

|Ueff |
)]
. (28)

3.3. Case III: three dimensions

For three dimensions, the eigenvalues have been determined from equation (17) with the
Green’s function calculated from a simplified density of states:

ρD=3 = 2

144πt̃ 2
(144̃t 2 − ε2)1/2. (29)

Using the above-mentioned DOS, the Green’s function (G3D
0 (E3D

b , q)) and the energy
dispersion (E3D

b ) in the [1, 1, 1] direction are obtained as

G3D
0 (E3D

b , q) = 2

144̃t 2
q

[
(E3D

b + 2εp)−
√
(E3D

b + 2εp)2 − 144̃t 2
q

]
(30)

E3D
b = Ueff

[
36t̃ 2

U2
eff

cos2(q/2) + 1

]
− 2εp. (31)

Now E3D
b (q, q, q) represents a stable bipolaron whenE3D

bmin is less than the lowest energy
(E3D

2p = −2εp − 12t̃ ) of two free polarons in three dimensions, i.e.

E3D
2p − E3D

bmin > 0 or Ueff < −6t̃ . (32)

So, for three dimensions there has always been a critical electron–phonon interaction strength
gc required in order to bind two polarons. ForU = 0 we require a critical valuegc, given by
the condition

g′2c = 3
t

h̄ω
exp(−g′2c ) (33)

to form a stable bipolaron. In figure 1 we show the variation of the critical electron–phonon
couplinggc/(h̄ω) with respect tot/(h̄ω) for U = 0, 0.5, 1.0, 2.0 and 4.0. Our calculation
shows a finitegc/(h̄ω) even atU = 0 for any finitet/(h̄ω). Like for 1D and 2D, we can also
calculate the effective mass of the bipolaron in three dimensions. The result is

m3D
eff =

|Ueff |
6t̃ 2

. (34)

4. The intermediate range ofh̄ω/t

In this regime of phonon frequency we have to take into account the effect of retardation. We
will include the effect of retardation by considering the nearest-neighbour distortion due to the
on-site electron–phonon interaction. For the intermediate range of ¯hω/t (h̄ω/t > 1) the value
of λ2, which is non-zero due to the retardation effect, appears to be small. For simplicity, we
neglect the second-nearest-neighbour repulsive term which is of the order ofλ2

2. Moreover, for
on-site and nearest-neighbour bipolarons the effect of the second-nearest-neighbour repulsive
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Figure 1. The variation of the critical electron–phonon couplingg′c = gc/(h̄ω) with respect
to t ′ = t/(h̄ω) for U = 0, 0.5, 1.0, 2.0 and 4.0 (U is expressed in units of ¯hω) for the three-
dimensional bipolaron in the far non-adiabatic limit.

term is not very significant. So we believe that the inclusion of a second-nearest-neighbour
repulsive term will not modify the result significantly. In this approximation, our effective
Hamiltonian reduces to

Heff = −t̃
∑
〈ij〉,σ

c
†
iσ cjσ − εp

∑
i

ni +Ueff
∑
i

ni↑ni↓ + V1

∑
〈ij〉

ninj (35)

wheret̃ = t exp(−λ̄2). To study the possibility of the formation of bipolarons, we consider two
electrons with spin↑ and↓ in the lattice. We will write the Hamiltonian in the wave-function
representation (15) and express the effective Hamiltonian in the form

Heff =
∑
q

Hq =
∑
q

(H
q

0 +Hq

1 ) (36)

where

H
q

0 = −2t exp(−λ̄2)
∑
q,m,δ

cos(q/2)|q,m〉〈m + δ, q| − 2εp (37)

H
q

1 = Ueff |q, 0〉〈0, q| + V1

∑
δ

|q, 0〉〈δ, q|. (38)

For a given wave vectorq, its form (36) corresponds to a system with impurities at site 0
and its nearest neighbour. WhenUeff orV1 is negative, then, depending on the dimensionality,
there may be a bound state with eigenvalues below the lowest energy of two polarons. A general
solution for the bound states of the bipolaron can be obtained from the poles of the Green’s
function [18]. After some algebra, the eigen-energies for the bound state are given by the
condition

det(1− 〈αq |Gq

0|αq〉〈αq |Hq

1 |αq〉) = 0 (39)
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whereG0(E, q) is the Green’s function forHq

0 and|αq〉 represents a(z+1)-component vector:

[|q, 0〉, . . . , |q, Eδ〉] (40)

with Eδ as the nearest-neighbour position vector. The corresponding solution of the condition
(39) is

1

Ueff
= −(V1/4zt̃ 2

q )[E
′
b(q)G0(Eb(q), q)− 1] +G0(Eb(q), q)

1− (V1E
′
b(q)/4zt̃

2
q )[E

′
b(q)G0(Eb(q), q)− 1]

(41)

whereE′b(q) = Eb(q)− 2εp andt̃q = t̃ cos(q/2) .
The solution of equation (41) will give rise to energy dispersion. These energy eigenvalues

are functions of the variational parametersλ1 andλ2. We minimize our lowest two-particle
energy with respect toλ1 andλ2 to obtainλ1, λ2 and the ground-state energy. With these values
of λ1 andλ2, one can readily calculate the effective mass of the bipolaron from the definition

meff = z

2

(
d2Eb(q)

dq2

)−1∣∣∣∣
q=0

= z

2

(
2zt̃ 2 + 1

4X (G
b
0 +Eb dGb

0/dEb)− 2zt̃ 2UeffG
b
0

V1 +Ueff V1G
b
0 − 2V1E

′
bG

b
0 − (dGb

0/dEb)X

)−1

(42)

where

X = 4zt̃ 2Ueff − Ueff V1E
′
b + V1E

′2
b .

Now the energy eigenvalues calculated from condition (41) will represent the spectrum for the
bipolaron provided that it has energy less than twice the ground-state energy of a free polaron
(Ep). The ground-state energy of a free polaron can be obtained from the minimization of the
energy eigenvalue

Ep(λ1, λ2) = −zt̃ − εp (43)

with respect toλ1 andλ2.

5. Results and discussion

In this section we will calculate the ground-state energy, the binding energy and the effective
mass of one-, two- and three-dimensional bipolarons. For one dimension we use the one-
dimensional Green’s function (G1D

0 (E1D
b , q)) given by equation (19), for two dimensions

we use the two-dimensional Green’s function (G2D
0 (E2D

b , q)) given by equation (24) and for
three dimensions we use the three-dimensional Green’s function (G3D

0 (E3D
b , q)) given by

equation (30), with the conditions (41) and (42) for obtaining the corresponding bipolaron
ground-state energy and effective mass respectively. The stability of the bipolaronic phase
is ensured by requiring that the bipolaron binding energy (2Ep − Eb) should be positive in
the bipolaronic phase. Our calculation is based on the modified Lang–Firsov transformation
which is suitable for ¯hω/t > 1 [8]. Therefore, in this work we will confine our investigations
to the region where ¯hω/t > 1.

In figures 2, 3 and 4 we plot the variations of the ground-state energy of one-, two- and
three-dimensional bipolarons with respect to the on-site Hubbard interactionU for different
electron–phonon couplingsg/(h̄ω) whent/(h̄ω) = 1. In all three cases, we find an almost
linear dependence of the ground-state energy on the on-site Hubbard repulsive interactionU .
A decrease of the ground-state energy with increase ofU confirms the fact that the repulsive
Hubbard interaction disfavours the formation of bound states between two polarons. Our
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Figure 2. The ground-state energy of the one-dimensional bipolaronE1D versus the on-site
Hubbard interactionU for t/(h̄ω) = 1.0 andg′ = g/(h̄ω) = 2.0, 1.75 and 1.5. (The energies and
U are expressed in units of ¯hω.)
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U

−16

−14

−12
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g’=1.75
g’=1.5

Figure 3. The ground-state energy of the two-dimensional bipolaronE2D versus the on-site
Hubbard interactionU for t/(h̄ω) = 1.0 andg′ = g/(h̄ω) = 2.0, 1.75 and 1.5. (The energies and
U are expressed in units of ¯hω.)

calculation of the ground-state energy for different values ofg/(h̄ω) shows that the ground-
state energy always decreases with increase of the electron–phonon coupling.

In figure 5 we compare the binding energy of one-, two- and three-dimensional bipolarons
for g/(h̄ω) = 2 andt/(h̄ω) = 1. Here we observe that the binding energy decreases with
increase of the on-site Hubbard interactionU , and, beyond a critical value ofU , sayUc, the
binding energy vanishes. The vanishing of the binding energy implies a transition from a
bipolaronic ground state to the polaronic ground state. The transition from the bipolaronic
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Figure 4. The ground-state energy of the three-dimensional bipolaronE3D versus the on-site
Hubbard interactionU for t/(h̄ω) = 1.0 andg′ = g/(h̄ω) = 2.0 and 2.5. (The energies andU
are expressed in units of ¯hω.)
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Figure 5. The binding energy of one-, two- and three-dimensional bipolarons versus the on-site
Hubbard interactionU for g′ = g/(h̄ω) = 2.0 and t/(h̄ω) = 1.0. (The energies andU are
expressed in units of ¯hω.)

phase to the polaronic phase occurs at higher values ofU as we reduce the dimensionality.
To study the dependence of the binding energy on the electron–phonon couplingg/(h̄ω)

and the hopping parametert/(h̄ω), we plot the binding energy versusU for g/(h̄ω) = 1.75
and 1.5 att/(h̄ω) = 0.5 in figures 6 and 7.
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Figure 6. The binding energy of one-, two- and three-dimensional bipolarons versus the on-site
Hubbard interactionU for g′ = g/(h̄ω) = 1.75 andt/(h̄ω) = 0.5. (The energies andU are
expressed in units of ¯hω.)

0 1 2 3 4 5
U

0

1

2

3

4

5

B
in

di
ng

 e
ne

rg
y

1D
2D
3D

g’=1.5

Figure 7. The binding energy of one-, two- and three-dimensional bipolarons versus the on-site
Hubbard interactionU for g′ = g/(h̄ω) = 1.5 and t/(h̄ω) = 0.5. (The energies andU are
expressed in units of ¯hω.)

Since the discovery of high-temperature superconductivity, the mobility of the bipolaron
in different dimensions has become an important issue. In order to investigate this problem we
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determine the ratiom∗/m between the effective massm∗ of the bipolaron and the free-band
massm. In figure 8 we compare the ratiom∗/m for one-, two- and three-dimensional bipolarons
for g/(h̄ω) = 2 andt/(h̄ω) = 1. Our calculation shows a decrease of the effective mass with
the increase of dimensionality and the increase of the Hubbard on-site interactionU . This result
also indicates that the bipolaronic binding is stronger in lower dimensions. To investigate how
the electron–phonon couplingg/(h̄ω) and the hoppingt/(h̄ω) affect the effective mass, we
studied the variation of the effective mass with respect toU for g/(h̄ω) = 1.75 and 1.5 at
t/(h̄ω) = 0.5; the results are presented in figures 9 and 10.
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Figure 8. The effective mass of one-, two- and three-dimensional bipolarons versus the on-site
Hubbard interactionU (expressed in units of ¯hω) for g′ = g/(h̄ω) = 2.0 andt/(h̄ω) = 1.0.

From our earlier discussions, we have found that for any fixedg/(h̄ω) there exists a critical
on-site interactionUc/(h̄ω) beyond which the polaronic phase becomes stable. Now we will
investigate whether there exists a critical electron–phonon couplinggc/(h̄ω) for binding two
polarons even whenU = 0. In figure 11 we plot the variation ofgc/(h̄ω)with respect tot/(h̄ω)
for one-, two- and three-dimensional bipolarons. For one dimension we obtaingc/(h̄ω) = 0
for any value oft/(h̄ω). This implies that one would get stable bipolarons for any finite
electron–phonon coupling whenU = 0. But the scenario is different in higher dimensions. In
two or three dimensions the electron–phonon interaction has to be greater than a critical value
to form a stable bipolaron even atU = 0. This critical value is higher in higher dimensions
for the same value oft/(h̄ω). The critical electron–phonon couplinggc/(h̄ω) is an increasing
function oft/(h̄ω) when the dimension of the electron–phonon system is greater than one.

6. Summary and conclusions

In summary, we have studied a system of two electrons or holes coupled to optical phonons
in the non-adiabatic limit and in the presence of an on-site Coulomb repulsionU . We have
chosen the modified Lang–Firsov variational wave function with on-site and nearest-neighbour
distortion to integrate out the phonon degrees of freedom and obtain an effective interacting
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Figure 9. The binding energy of one-, two- and three-dimensional bipolarons versus the on-site
Hubbard interactionU (expressed in units of ¯hω) for g′ = g/(h̄ω) = 1.75 andt/(h̄ω) = 0.5.
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Figure 10. The binding energy of one-, two- and three-dimensional bipolarons versus the on-site
Hubbard interactionU (expressed in units of ¯hω) for g′ = g/(h̄ω) = 1.5 andt/(h̄ω) = 0.5.

electronic Hamiltonian. This effective electronic Hamiltonian is then solved exactly to obtain
the ground-state energy, the binding energy and the effective mass of the one-, two- and three-
dimensional bipolarons. While investigating the stability of bipolarons, we observe a critical
on-site Hubbard interactionUc below which the bipolarons are stable. The critical valueUc is
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Figure 11. Variation of the critical electron–phonon couplingg′c = gc/(h̄ω) with respect to
t ′ = t/(h̄ω) for one-, two- and three-dimensional bipolarons in the absence of an on-site Hubbard
interactionU .

higher in lower dimensions and it increases with increase of the electron–phonon interaction. In
the absence of on-site repulsion, the bipolaronic phase is stable for the entire range of electron–
phonon interaction for one dimension, but in two or three dimensions the electron–phonon
interaction has to be greater than a critical valuegc/(h̄ω) for a bound pair of two polarons to
form. Since the binding and the mobility of the pair of polarons are the initial requirements for
exploring the possibility that these composite bosons could manifest condensation, we believe
that the present work will throw some light on the theory of bipolaronic superconductivity.

Acknowledgment

This work was supported by the German Science Council (Deutsche Forschungsgemeinschaft)
through the Graduate College ‘Structure and Dynamics of Heterogeneous Systems’.

References

[1] Schlenker C 1985Physics of Disordered Materialed D Adler, H Fritzsche and S Ovshinski (New York: Plenum)
[2] Alexandrov A S and Ranninger J 1981Phys. Rev.B 241164
[3] Alexandrov A S and Mott N F 1994Rep. Prog. Phys.571197

Mott N F 1987Nature327185
[4] Scott J, Bredas J L, Kaufman J H, Pfluger P, Street S B and Yakushi K 1983Mol. Cryst. Liq. Cryst.118163
[5] Robaszkiewicz S 1984PhysicaB + C 125150
[6] Holstein T 1959Ann. Phys., Lpz.8 375
[7] Hubbard J 1963Proc. R. Soc.A 276238
[8] Alexandrov A S, Kabanov V V and Ray D K 1994Phys. Rev.B 499915
[9] Marsiglio F 1995PhysicaC 24421

[10] Hirsch J E and Fradkin E 1982Phys. Rev. Lett.49402
Hirsch J E and Fradkin E 1983Phys. Rev.B 274302



8892 S Sil

[11] Noack R M and Scalapino D J 1991Phys. Rev. Lett.66778
[12] Marsiglio F 1991Electron–Phonon Interaction in Oxide Superconductorsed R Baquero (Singapore: World

Scientific) p 167
[13] Lang I G and Firsov Yu A 1962Zh. Eksp. Teor. Fiz.431843 (Engl. Transl. 1963Sov. Phys.–JETP161301)
[14] Das A N and Sil S 1993J. Phys.: Condens. Matter5 8265
[15] La Magna A and Pucci R 1996Phys. Rev.B 538449

La Magna A and Pucci R 1997Phys. Rev.B 556296
[16] La Magna A and Pucci R 1997Phys. Rev.B 5514 886
[17] Moskalenko V A, Entel P and Digor D F 1999Phys. Rev.B 59619
[18] Economou E N 1979Green’s Functions in Quantum Physics(Berlin: Springer)
[19] To justify this approximation, let us take the average ofH̃ (equation (2)) over the phonon state|Ph〉 =

πi(a|0i〉 + b|1i〉), wherea2 + b2 = 1, instead of the zero-phonon state alone. Now, this modification does
not changeUeff , V1 andV2 directly. Moreover, the contribution ofVpol−ph due to our new modified phonon
wave function|Ph〉 is−2

∑
i,σ [(g− λ1)− zλ2]abni,σ . This is just a site energy and it does not contribute to

the binding of two polarons. Therefore, it seems that the modified Lang–Firsov transformation can extract
the essential characteristics of the problem of the formation of the bipolaron in the Holstein Hubbard model.


